Journal of Yangtze River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (8): 128-134.DOI: 10.11988/ckyyb.20230377
Previous Articles Next Articles
HU Meng-ling(
), ZHANG Xiao-long(
), XU Wen-hao, WANG Zhi-wen, CHEN Hao
Received:2023-04-12
Revised:2023-11-29
Online:2024-08-01
Published:2024-08-13
CLC Number:
HU Meng-ling, ZHANG Xiao-long, XU Wen-hao, WANG Zhi-wen, CHEN Hao. Influence of Dry Density and Wetting-Drying on Hydraulic Characteristics of Compacted Loess[J]. Journal of Yangtze River Scientific Research Institute, 2024, 41(8): 128-134.
| 孔隙 比e | 相对密度 Gs | 液限 ωL /% | 塑限 ωp /% | 最优 含水率 ωopc /% | 最大干密度 ρdmax/ ( g·cm-3) |
|---|---|---|---|---|---|
| 0.998 | 2.69 | 31.57 | 17.26 | 13.2 | 1.91 |
Table 1 Basic physical properties of the test loess
| 孔隙 比e | 相对密度 Gs | 液限 ωL /% | 塑限 ωp /% | 最优 含水率 ωopc /% | 最大干密度 ρdmax/ ( g·cm-3) |
|---|---|---|---|---|---|
| 0.998 | 2.69 | 31.57 | 17.26 | 13.2 | 1.91 |
| 干密度/ (g·cm-3) | 减湿制样路径 | 增湿制样路径 |
|---|---|---|
| 1.719 1.776 1.834 | 饱和→23%→21%→19%→17%→15%→13%→11%→9%→7%→5% | 饱和→风干→5%→7%→9%→11%→13%→15%→17%→19%→21%→23% |
Table 2 Wetting and drying scheme for the SWCC test on compacted loess with different dry densities
| 干密度/ (g·cm-3) | 减湿制样路径 | 增湿制样路径 |
|---|---|---|
| 1.719 1.776 1.834 | 饱和→23%→21%→19%→17%→15%→13%→11%→9%→7%→5% | 饱和→风干→5%→7%→9%→11%→13%→15%→17%→19%→21%→23% |
| 饱和盐溶液 | 相对湿度RH/% | 基质吸力/MPa |
|---|---|---|
| LiBr | 6.6 | 367.54 |
| LiCl·H2O | 12.0 | 286.70 |
| CH3COOK | 23.1 | 198.14 |
| MgCl2·6H2O | 33.1 | 149.51 |
| K2CO3 | 43.2 | 113.50 |
| NaBr | 59.1 | 71.12 |
| KI | 69.9 | 48.42 |
| NaCl | 75.5 | 38.00 |
| KCl | 85.1 | 21.82 |
| K2SO4 | 97.6 | 3.29 |
Table 3 Matric suction values corresponding to different saturated salt solutions[18]
| 饱和盐溶液 | 相对湿度RH/% | 基质吸力/MPa |
|---|---|---|
| LiBr | 6.6 | 367.54 |
| LiCl·H2O | 12.0 | 286.70 |
| CH3COOK | 23.1 | 198.14 |
| MgCl2·6H2O | 33.1 | 149.51 |
| K2CO3 | 43.2 | 113.50 |
| NaBr | 59.1 | 71.12 |
| KI | 69.9 | 48.42 |
| NaCl | 75.5 | 38.00 |
| KCl | 85.1 | 21.82 |
| K2SO4 | 97.6 | 3.29 |
| 干密度/ (g·cm-3) | 阶段 | VG模型拟合参数 | 进气值/ kPa | ||||
|---|---|---|---|---|---|---|---|
| θr | θs | ||||||
| 1.719 | 减湿 | 0.052 9 | 0.361 0 | 2.42×10-3 | 1.423 1 | 0.995 | 204.633 |
| 增湿 | 0.055 9 | 0.312 9 | 3.08×10-3 | 1.427 6 | 0.997 | 129.945 | |
| 1.776 | 减湿 | 0.061 7 | 0.339 7 | 8.71×10-4 | 1.525 8 | 0.986 | 513.052 |
| 增湿 | 0.057 2 | 0.300 7 | 1.74×10-3 | 1.470 4 | 0.987 | 204.633 | |
| 1.834 | 减湿 | 0.062 5 | 0.318 2 | 6.42×10-4 | 1.528 5 | 0.993 | 657.129 |
| 增湿 | 0.058 5 | 0.285 2 | 7.86×10-4 | 1.488 8 | 0.997 | 548.245 | |
Table 4 Fitting parameters of VG model for the SWCCs of compacted loess with different dry densities under wetting and drying cycles
| 干密度/ (g·cm-3) | 阶段 | VG模型拟合参数 | 进气值/ kPa | ||||
|---|---|---|---|---|---|---|---|
| θr | θs | ||||||
| 1.719 | 减湿 | 0.052 9 | 0.361 0 | 2.42×10-3 | 1.423 1 | 0.995 | 204.633 |
| 增湿 | 0.055 9 | 0.312 9 | 3.08×10-3 | 1.427 6 | 0.997 | 129.945 | |
| 1.776 | 减湿 | 0.061 7 | 0.339 7 | 8.71×10-4 | 1.525 8 | 0.986 | 513.052 |
| 增湿 | 0.057 2 | 0.300 7 | 1.74×10-3 | 1.470 4 | 0.987 | 204.633 | |
| 1.834 | 减湿 | 0.062 5 | 0.318 2 | 6.42×10-4 | 1.528 5 | 0.993 | 657.129 |
| 增湿 | 0.058 5 | 0.285 2 | 7.86×10-4 | 1.488 8 | 0.997 | 548.245 | |
| 阶段 | 干密度/(g·cm-3) | 饱和渗透系数Ks/(m·s-1) |
|---|---|---|
| 1.719 | 5.430×10-6 | |
| 减湿 | 1.776 | 6.440×10-7 |
| 1.834 | 5.640×10-8 | |
| 1.719 | 3.289×10-6 | |
| 增湿 | 1.776 | 4.054×10-7 |
| 1.834 | 2.313×10-8 |
Table 5 Measured values of saturated permeability coefficient of compacted loess with different dry densities during wetting and drying stages
| 阶段 | 干密度/(g·cm-3) | 饱和渗透系数Ks/(m·s-1) |
|---|---|---|
| 1.719 | 5.430×10-6 | |
| 减湿 | 1.776 | 6.440×10-7 |
| 1.834 | 5.640×10-8 | |
| 1.719 | 3.289×10-6 | |
| 增湿 | 1.776 | 4.054×10-7 |
| 1.834 | 2.313×10-8 |
| 阶段 | 干密度/(g·cm-3) | 饱和渗透系数Ks / (m·s-1) |
|---|---|---|
| 1.719 | 2.563×10-6 | |
| 增湿 | 1.776 | 3.073×10-7 |
| 1.834 | 1.647×10-8 |
Table 6 Predicted values of saturated permeability coefficient of compacted loess with different dry densities during wetting and drying stages
| 阶段 | 干密度/(g·cm-3) | 饱和渗透系数Ks / (m·s-1) |
|---|---|---|
| 1.719 | 2.563×10-6 | |
| 增湿 | 1.776 | 3.073×10-7 |
| 1.834 | 1.647×10-8 |
| [1] | HU Chang-ming, HU Ting-ting, ZHU Wu-wei, YUAN Yi-li, YANG Xiao, LIU Ming-liang, HOU Xu-hui. Evolution Characteristics of Cracks in Compacted Loess under Drying-Wetting Cycles [J]. Journal of Yangtze River Scientific Research Institute, 2024, 41(8): 96-103. |
| [2] | CHANG Zhou, YAN Chang-gen, AN Ning, LAN Heng-xing, SHI Yu-ling, BAO Han, XU Jiang-bo. Permeability and Soil-Water Characteristic Curve of Undisturbed Loess under Wetting-drying Cycles [J]. Journal of Yangtze River Scientific Research Institute, 2024, 41(1): 143-150. |
| [3] | WANG Xin. Model of Predicting Soil-Water Characteristic Curve and Relative Permeability Coefficient of Unsaturated Soil Based on Pore Water Distribution [J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(2): 89-93. |
| [4] | XUE Kai-xi, ZHOU Chao-hui, TIAN Xing-hua, DUO Hui-hui, DING Chen, CAO Kai, QI Xiao-hong. Application of Vertical Penetration Stratified Sampling Technique in Liquid-Plastic Limit Combined Testing [J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 114-121. |
| [5] | YIN Song, BAI Lin-jie, LI Xin-ming, FU Ying-jie, WANG Yu-long. Experimental Study on Disintegration Characteristics of Compacted Granite Residual Soil [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(9): 121-127. |
| [6] | TAO Gao-liang, LUO Chen-chen, LI Li-hua, LI Yi, LI Zi-yue. A Method for Predicting Air-entry Value of Deformable Soils Based on Van Genuchten Model [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(1): 84-88. |
| [7] | JIANG Jing-shan, ZUO Yong-zhen, CHENG Zhan-lin, PAN Jia-jun. Effects of Density on Mechanical Properties of Coarse Granular Material under Three-dimensional Stress [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(1): 89-94. |
| [8] | WEI Zi-yang, HUANG Zhi-hong, MU Rui, HUANG Yan-sen, PU Shao-yun, WU Ning-bo, WANG Bo. Experimental Study on Improving Engineering Properties of Red Clayby Waste Rubber Powder [J]. JOURNAL OF YANGTZE RIVER SCIENTIFIC RESEARCH INSTI, 2020, 37(8): 95-100. |
| [9] | GENG Hong-bin. Correlation Between Compactability and Particle Compositionof Fine-grained Soil [J]. JOURNAL OF YANGTZE RIVER SCIENTIFIC RESEARCH INSTI, 2020, 37(8): 161-165. |
| [10] | XIN Bao-quan, DUAN Zheng-xiao, WAN Lu. Experimental Study on Matric Suction of Tailings Sand by Filter Paper Method [J]. JOURNAL OF YANGTZE RIVER SCIENTIFIC RESEARCH INSTI, 2020, 37(7): 125-129. |
| [11] | CHEN Bo, YAN Rong-tao, LIANG Wei-yun, TIAN Hui-hui, WEI Chang-fu. Experimental Study on Thermal Conductivity of Red Clay in Drying Process [J]. JOURNAL OF YANGTZE RIVER SCIENTIFIC RESEARCH INSTI, 2020, 37(7): 140-146. |
| [12] | ZHANG Shi-bin, LI Rong-jian, WANG Lei, XIAO Hui-ping, LIU Jun-ding, ZHU Cai-hui. Calibrating Moisture Content Measurement of Loess by Time Domain Reflectometry: Influential Factors and Assessment [J]. JOURNAL OF YANGTZE RIVER SCIENTIFIC RESEARCH INSTI, 2020, 37(3): 155-161. |
| [13] | ZHANG Lan-hui, WANG Shi-mei, JIANG Ming, LIU Fan. Experimental Analysis of Influential Factors of the Tensile Strength of Sandy Clayey Soil [J]. JOURNAL OF YANGTZE RIVER SCIENTIFIC RESEARCH INSTI, 2020, 37(3): 118-124. |
| [14] | FENG Wen-kai, BAI Hui-lin, MENG Rui, LI Kun, OU Wen. Unsaturated Strength Characteristics and Mesomechanism of Silty Clay Deposited in Ice Water [J]. JOURNAL OF YANGTZE RIVER SCIENTIFIC RESEARCH INSTI, 2020, 37(10): 82-88. |
| [15] | ZHANG Lang, LEI Xue-wen, MENG Qing-shan, LI Yong. Ring-shear Test of Basalt Residual Soil [J]. JOURNAL OF YANGTZE RIVER SCIENTIFIC RESEARCH INSTI, 2019, 36(4): 93-97. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||